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The diagram on the cover contains the crucial definitions of trigonometry. About the Cover

• The 1 shows that the trigonometric functions are defined in the context of the
unit circle.

• The arrow shows that angles are measured counterclockwise from the positive
horizontal axis.

• The point labeled (cos θ, sin θ) shows that cos θ is the first coordinate of the
endpoint of the radius corresponding to the angle θ, and sin θ is the second
coordinate of this endpoint. Because this endpoint is on the unit circle, the
identity cos2θ + sin2θ = 1 follows immediately.

• The equation “ slope = tan θ” shows that tan θ is the slope of the radius
corresponding to the angle θ; thus tan θ = sin θ

cos θ .
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Preface to the Instructor

Goals and Prerequisites
This book seeks to prepare students to succeed in calculus. Thus it focuses on topics
that students need for calculus, especially first-semester calculus. Important parts of
mathematics that should be known by all educated citizens but that are irrelevant
to calculus have been excluded.

Precalculus is a one-semester course at most colleges and universities. Neverthe-
less, typical precalculus textbooks contain about a thousand pages (not counting a
student solutions manual), far more than can be covered in one semester.

By emphasizing topics crucial to success in calculus, this book has a more
manageable size even though it includes a student solutions manual. A thinner
textbook should indicate to students that they are truly expected to master most of
the content of the book.

The prerequisite for this course is the usual course in intermediate algebra. Many
students in precalculus classes have had a trigonometry course previously, but this
book does not assume students remember any trigonometry. The book is fairly
self-contained, starting with a review of the real numbers in Chapter 0, whose Chapter 0 could have been titled A

Prelude to A Prelude to
Calculus.

numbering is intended to indicate that many instructors will prefer to cover this
beginning material quickly or skip it.

Different instructors will want to cover different sections of this book. My
personal preference is to finish up through Section 6.2 (Series). By including the
sections on sequences and series, you will give students some experience with
using subscript notation and summation notation that will be useful when they
get to Riemann integration. The last chapter (Polar Coordinates, Vectors, and Complex
Numbers) deals with topics that are typically more useful for second-semester
calculus. I do not cover this chapter when teaching precalculus because I prefer
to focus on getting students ready to succeed in first-semester calculus. Other
instructors have different preferences, which is why I have included the last chapter
in this book.

A Book Designed to be Read
Mathematics faculty frequently complain, with justification, that most students in
lower-division mathematics courses do not read the textbook.

When doing homework, a typical precalculus student looks only at the relevant
section of the textbook or the student solutions manual for an example similar to the
homework exercise at hand. The student reads enough of that example to imitate
the procedure, does the homework exercise, and then follows the same process with
the next homework exercise. Little understanding may take place.

In contrast, this book is designed to be read by students. The writing style
and layout are meant to induce students to read and understand the material. The text often points out to

students that understanding the
material will be more useful than
memorizing it.

Explanations are more plentiful than typically found in precalculus books, with
examples of the concepts making the ideas concrete whenever possible.

As a visual aid to students, boxes in this book are color-coded to show their
function. Specifically, boxes with yellow shading give definitions, and boxes with
blue shading give results (which in many books are called theorems or corollaries).

xv
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Exercises and Problems
Students learn mathematics by actively working on a wide range of exercises andEach exercise in this book has a

unique correct answer, usually a
number or a function. Each
problem in this book has multiple
correct answers, usually consisting
of explanations or examples.

problems. Ideally, a student who reads and understands the material in a section of
this book should be able to do the exercises and problems in that section without
further help. However, some of the exercises require application of the ideas in a
context that students may not have seen before, and many students will need help
with these exercises. This help is available from the complete worked-out solutions
to all the odd-numbered exercises that appear at the end of each section.

Because the worked-out solutions were written solely by the author of the text-
book, students can expect an unusually consistent approach to the material. Students
will be happy to save money by not having to purchase a separate student solutions
manual.

The exercises (but not the problems) occur in pairs, so that an odd-numberedThis book contains what is usually
a separate book called the student
solutions manual. Thus it is even
thinner in comparison to
competing bloated books than is
indicated by just a page count.

exercise is followed by an even-numbered exercise whose solution uses the same
ideas and techniques. A student stumped by an even-numbered exercise should
be able to tackle it after reading the worked-out solution to the corresponding
odd-numbered exercise. This arrangement allows the text to focus more centrally
on explanations of the material and examples of the concepts.

Many students read the student solutions manual when they are assigned home-
work, even though they may be reluctant to read the main text. The integration of
the student solutions manual within this book may encourage students who would
otherwise read only the student solutions manual to drift over and also read the
main text. To reinforce this tendency, the worked-out solutions to the odd-numbered
exercises at the end of each section are typeset in a slightly less appealing style
(smaller type and two-column format) than the main text. The reader-friendly
appearance of the main text may nudge students to spend some time there.

Exercises and problems in this book vary greatly in difficulty and purpose. Some
exercises and problems are designed to hone algebraic manipulation skills; other
exercises and problems are designed to push students to genuine understanding
beyond rote algorithmic calculation.

Some exercises and problems intentionally reinforce material from earlier in the
book. For example, Exercise 27 in Section 4.3 asks students to find the smallest
number x such that sin(ex) = 0; students will need to understand that they want to
choose x so that ex = π and thus x = ln π. Although such exercises require more
thought than most exercises in the book, they allow students to see crucial concepts
more than once, sometimes in unexpected contexts.

For instructors who want to offer online grading to their students, exercises from
this book are available via either WileyPLUS or WebAssign. These online learning
systems give students instant feedback and keep records for instructors. Most of the
exercises in this book have been translated into algorithmically generated exercises
in these two online learning systems, creating an essentially unlimited number of
variations. These systems give instructors the flexibility of allowing students who
answer an exercise incorrectly to attempt similar exercises requiring the same ideas
and techniques.

The Calculator Issue
The issue of whether and how calculators should be used by students has generatedTo aid instructors in presenting the

kind�of�course�they�want,�the�
symbol�������appears�with�exercises�
and�problems�that�require�students�
to�use�a�calculator.

immense controversy.
Some sections of this book have many exercises and problems designed for

calculators—examples include Section 3.4 on exponential growth and Section 5.4 on
the law of sines and the law of cosines. However, some sections deal with material
not as amenable to calculator use. Throughout the text, the emphasis is on giving
students both the understanding and the skills they need to succeed in calculus.
Thus the book does not aim for an artificially predetermined percentage of exercises
and problems in each section requiring calculator use.
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Some exercises and problems that require a calculator are intentionally designed
to make students realize that by understanding the material, they can overcome
the limitations of calculators. For example, Exercise 15 in Section 3.2 asks students
to find the number of digits in the decimal expansion of 74000. Brute force with a
calculator will not work with this problem because the number involved has too
many digits. However, a few moments’ thought should show students that they can
solve this problem by using logarithms (and their calculators!).

The calculator icon can be interpreted for some exercises, depending on the Regardless of what level of
calculator use an instructor
expects, students should not turn
to a calculator to compute
something like cos 0, because then
cos has become just a button on
the calculator.

instructor’s preference, to mean that the solution should be a decimal approximation
rather than the exact answer. For example, Exercise 3 in Section 3.7 asks how much
would need to be deposited in a bank account paying 4% interest compounded
continuously so that at the end of 10 years the account would contain $10,000. The
exact answer to this exercise is 10000/e0.4 dollars, but it may be more satisfying
to the student (after obtaining the exact answer) to use a calculator to see that
approximately $6,703 needs to be deposited. For such exercises, instructors can
decide whether to ask for exact answers or decimal approximations (the worked-out
solutions for the odd-numbered exercises usually contain both types of solutions).

Functions
In preparation for writing this book, I asked many calculus instructors what im-
provements they would like to see in the preparation of their calculus students. The
two most common answers I received were (1) better understanding of functions
and (2) better algebraic manipulation skills. Both of these goals are intertwined
throughout the book.

Because of the importance of functions, Chapter 1 (Functions and Their Graphs) is
devoted to functions, considerably earlier than in many precalculus books. Particular
attention is paid to function transformations, composition of functions, and inverse A good understanding of the

composition of functions will be
tremendously useful to students
when they get to the chain rule in
calculus.

functions.
The unifying concept of inverse functions appears several times later in the book.

In particular, y1/m is defined as the number that when raised to the mth power gives
y (in other words, the function y $→ y1/m is the inverse of the function x $→ xm; see
Section 2.3). Later, a second major use of inverse functions occurs in the definition
of logb y as the number such that b raised to this number gives y (in other words,
the function y $→ logb y is the inverse of the function x $→ bx; see Section 3.1).

Thus students should be comfortable with using inverse functions by the time
they reach the inverse trigonometric functions (arccosine, arcsine, and arctangent) in
Section 5.1. This familiarity with inverse functions should help students deal with
inverse operations (such as antidifferentiation) when they reach calculus.

Chapter 2 (Linear, Quadratic, Polynomial, and Rational Functions) should be mostly
review of what students learned in their intermediate algebra course. I placed the
more demanding Chapter 1 first because there is a serious danger of boring students
in a precalculus class if they develop an early feeling that they already know all this
material.

Logarithms, e, and Exponential Growth
The base for logarithms in Chapter 3 is arbitrary, although most of the examples Logarithms play a key role in

calculus, but many calculus
instructors complain that too
many students lack appropriate
algebraic manipulation skills with
logarithms.

and motivation in the early part of Chapter 3 use logs base 2 or logs base 10.
All precalculus textbooks present radioactive decay as an example of exponential

decay. Amazingly, the typical precalculus textbook states that if a radioactive isotope
has a half-life of h, then the amount left at time t will equal e−kt times the amount
at time 0, where k = ln 2

h .
A much clearer formulation would state, as this textbook does, that the amount

left at time t will equal 2−t/h times the amount at time 0. The unnecessary use of e
and ln 2 in this context may suggest to students that e and natural logarithms have
only contrived and artificial uses, which is not the message that students should
receive from their textbook.
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Similarly, many precalculus textbooks consider, for example, a colony of bacteria
doubling in size every 3 hours, with the textbook then producing the formula
e(t ln 2)/3 for the growth factor after t hours. The simpler and natural formula 2t/3

seems not to be mentioned in such books. This book presents the more natural
approach to such issues of exponential growth and decay.

The crucial concepts of e and natural logarithms are introduced in the second
half of Chapter 3. Most precalculus textbooks either present no motivation for e
or motivate e via continuously compounding interest or through the limit of an
indeterminate expression of the form 1∞; these concepts are difficult for students at
this level to understand.

Chapter 3 presents a clean and well-motivated approach to e and the natural
logarithm. This approach uses the area (intuitively defined) under the curve y = 1

x ,About half of calculus (namely,
integration) deals with area, but
most precalculus textbooks barely
mention the subject.

above the x-axis, and between the lines x = 1 and x = c.
A similar approach to e and the natural logarithm is common in calculus courses.

However, this approach is not usually adopted in precalculus textbooks. Using
obvious properties of area, the simple presentation given here shows how these ideas
can come through clearly without the technicalities of calculus or the messy notation
of Riemann sums. Indeed, this precalculus approach to the exponential function
and the natural logarithm shows that a good understanding of these subjects need
not wait until the calculus course. Students who have seen the approach given here
should be well prepared to deal with these concepts in their calculus courses.

The approach taken here also has the advantage that it easily leads, as shown in
Chapter 3, to the approximation ln(1 + h) ≈ h for small values of h. Furthermore,
the same methods show that if r is any number, then

!
1 + r

x
"x ≈ er for large values

of x. A final bonus of this approach is that the connection between continuously
compounding interest and e becomes a nice corollary of natural considerations
concerning area.

Trigonometry
This book gives a gentle introduction to trigonometry, making sure that students areTrigonometry is the hardest part of

precalculus for most students. comfortable with the unit circle and with radians before defining the trigonometric
functions.

Rather than following the practice of most precalculus books of defining six
trigonometric functions all at once, this book has a section on the cosine and sine
functions. Then the next section introduces the tangent function and finally the
secant, cosecant, and cotangent functions. These latter three functions, which are
simply the reciprocals of the three key trigonometric functions, add little content or
understanding; thus they do not receive much attention here.

Should the trigonometric functions be introduced via the unit circle or via
right triangles? Calculus requires the unit-circle approach because, for example,
discussing the Taylor series for cos x requires us to consider negative values of x
and values of x that are more than π

2 radians. Thus this textbook uses the unit-circle
approach, but quickly gives applications to right triangles. The unit-circle approach
also allows for a well-motivated introduction to radians.

Most precalculus textbooks define the trigonometric functions using four symbols:
θ or t for the angle and P(x, y) for the endpoint of the radius of the unit circle
corresponding to that angle. Why is that endpoint usually called P(x, y) instead of
simply (x, y)? Even better than just dispensing with P, the symbols x and y can also
be skipped by denoting the coordinates of the endpoint of the radius as (cos θ, sin θ),
thus defining the cosine and sine. The standard approach of defining cos θ = x and
sin θ = y causes problems when students get to calculus and need to deal with cos x.
If students have memorized the notion that cosine is the x-coordinate, then they
will be thinking that cos x is the x-coordinate of . . . oops, this is two different uses
of x. To avoid the confusion discussed above, this book uses only one symbol to
define the trigonometric functions.



Preface to the Instructor xix

What’s New in this Third Edition
• The chapter on systems of linear equations from the previous edition has been

eliminated, as has the appendix on parametric curves. Both these items, which
deal with topics that are not needed for first-semester calculus, are available as
electronic supplements. They are also available in my Algebra and Trigonometry
book.

• The section on transformations of trigonometric functions has been moved to
Chapter 5.

• What are now Chapters 6 and 7 were in the reverse order in the previous
edition. Chapter 7 has a new title.

• The main text font has been changed from Lucida to URW Palladio, which For more information on the
typesetting of this book, see the
Colophon at the end of the book.

is a legal clone of Palatino. The math fonts have been changed from various
versions of Lucida to various versions of URW Palladio, Pazo Math, and
Computer Modern.

• The paper length has been slightly expanded by three-eighths of an inch.

• The new fonts and new page size mean new page breaks and new line breaks. The content changes and format
changes result in a book that is
about one hundred pages shorter
than the previous version.

LATEX handles line breaks well. However, I had to do extensive rewriting to
make page breaks come out well. For example, students almost always have
an entire Example visible without turning a page.

• Each full page of text now contains at least two marginal notes, as compared
to at least one marginal note in the previous edition. A figure or photo counts
as a marginal note. When a figure or photo has a caption, the caption does not
count as an additional marginal note. The word Example does not count as a
marginal note.

• Eighteen new photos relevant to the content have been added.

• A new color scheme has been implemented. Definition boxes are now yellow
and result boxes are now blue. Example lines are now orange, and example
labels are now white inside orange.

• Definition boxes, result boxes, learning objectives boxes, and example label
boxes now have rounded corners for a gentler look.

• Definition boxes and result boxes now have their titles in a darker-shaded
sub-box for a catchy appearance.

• Numerous improvements have been made throughout the text based upon
suggestions from faculty and students who used the previous edition.

• New exercises have been added in almost all sections. The Appendix now
includes worked-out solutions to the Appendix’s exercises.

Comments Welcome
I seek your help in making this a better book. Please send me your comments and
your suggestions for improvements. Thanks!

Sheldon Axler
San Francisco State University

email: precalculus@axler.net
web site: precalculus.axler.net
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Preface to the Student

This book will help prepare you to succeed in calculus. If you master the material
in this book, you will have the knowledge, the understanding, and the skills needed
to do well in a calculus course.

To learn this material well, you will need to spend serious time reading this book.
You cannot expect to absorb mathematics the way you devour a novel. If you read
through a section of this book in less than an hour, then you are going too fast. You
should pause to ponder and internalize each definition, often by trying to invent
some examples in addition to those given in the book. When steps in a calculation
are left out in the book, you need to supply the missing pieces, which will require
some writing on your part. These activities can be difficult when attempted alone;
try to work with a group of a few other students.

Boxes in this book are color-coded to show their function. Specifically, boxes with
yellow shading give definitions, and boxes with blue shading give results (which in
many books are called theorems, corollaries, etc.).

You will need to spend several hours per section doing the exercises and problems. Worked-out solutions to the
odd-numbered exercises are given
at the end of each section.

Make sure that you can do all the exercises and most of the problems, not just the
ones assigned for homework. By the way, the difference between an exercise and
a problem in this book is that each exercise has a unique correct answer that is a
mathematical object such as a number or a function. In contrast, the solutions to The symbol appears with

exercises and problems that require
a calculator.

problems consist of explanations or examples; thus problems have multiple correct
answers.

Have fun, and best wishes in your studies!

Sheldon Axler
San Francisco State University

web site: precalculus.axler.net
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Chapter
0

The Parthenon, built in Athens
over 2400 years ago. The ancient
Greeks developed and used
remarkably sophisticated
mathematics.

The Real Numbers
Success in this course will require a good understanding of the basic properties of
the real number system. Thus this book begins with a review of the real numbers.
This chapter is labeled Chapter 0 to emphasize its review nature.

The first section of this chapter starts with the construction of the real line. This
section contains as an optional highlight the ancient Greek proof that no rational
number has a square equal to 2. This beautiful result appears here because everyone
should see it at least once.

Although this chapter will be mostly review, a thorough grounding in the real
number system will serve you well throughout this course. You will need good
algebraic manipulation skills. Thus the second section of this chapter reviews
fundamental algebra of the real numbers. You will also need to feel comfortable
working with inequalities and absolute values, which are reviewed in the last section
of this chapter.

Even if your instructor decides to skip this chapter, you may want to read through
it. Make sure that you can do the exercises.

1
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0.1 The Real Line

Learning Objectives

By the end of this section you should be able to

• explain the correspondence between the system of real numbers and the
real line;

• show that some real numbers are not rational.

The integers are the numbers

. . . ,−3,−2,−1, 0, 1, 2, 3, . . . ;

here the dots indicate that the numbers continue without end in each direction. The
sum, difference, and product of any two integers are also integers.

The quotient of two integers is not necessarily an integer. Thus we extend
arithmetic to the rational numbers, which are numbers of the form

The use of a horizontal bar to
separate the numerator and
denominator of a fraction was
introduced by Arabian
mathematicians about 900 years
ago.

m
n

,

where m and n are integers and n ̸= 0.
Division is the inverse of multiplication, in the sense that we want the equation

m
n
· n = m

to hold. In the equation above, if we take n = 0 and (for example) m = 1, we get the
nonsensical equation 1

0 · 0 = 1. This equation is nonsensical because multiplying
anything by 0 should give 0, not 1. To get around this problem, we leave expressions
such as 1

0 undefined. In other words, division by 0 is prohibited.
The rational numbers form a terrifically useful system. We can add, multiply,

subtract, and divide rational numbers (with the exception of division by 0) and
stay within the system of rational numbers. Rational numbers suffice for all actual
physical measurements, such as length and weight, of any desired accuracy.

However, geometry, algebra, and calculus force us to consider an even richer
system of numbers—the real numbers. To see why we need to go beyond the
rational numbers, we will investigate the real line.

Construction of the Real Line
Imagine a horizontal line, extending without end in both directions. Pick a point on
this line and label it 0. Pick another point to the right of 0 and label it 1, as in the
figure below.

Two key points on the real line.

Once the points 0 and 1 have been chosen on the line, everything else is de-The symbol for zero was invented
in India more than 1100 years ago. termined by thinking of the distance between 0 and 1 as one unit of length. For

example, 2 is one unit to the right of 1. Then 3 is one unit to the right of 2, and so
on. The negative integers correspond to moving to the left of 0. Thus −1 is one unit
to the left of 0. Then −2 is one unit to the left of −1, and so on.

Integers on the real line.
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If n is a positive integer, then 1
n is to the right of 0 by the length obtained by

dividing the segment from 0 to 1 into n segments of equal length. Then 2
n is to the

right of 1
n by the same length, and 3

n is to the right of 2
n by the same length again,

and so on. The negative rational numbers are placed on the line similarly, but to the
left of 0.

In this way, every rational number is associated with a point on the line. No
figure can show the labels of all the rational numbers, because we can include only
finitely many labels in a figure. The figure below shows the line with labels attached
to a few of the points corresponding to rational numbers.

Some rational numbers on the real line.

We will use the intuitive notion that the line has no gaps and that every conceiv-
able distance can be represented by a point on the line. With these concepts in mind,
we call the line shown above the real line.

We think of each point on the real line as corresponding to what we call a real
number. The undefined intuitive notions (such as “no gaps”) can be made precise
using more advanced mathematics. In this book, we let our intuitive notions of the
real line serve to define the system of real numbers.

Is Every Real Number Rational?
We know that every rational number corresponds to some point on the real line.

Pythagoras explaining his work
(from The School of Athens,
painted by Raphael around 1510).

Does every point on the real line correspond to some rational number? In other
words, is every real number rational?

Probably the first people to ponder these issues thought that the rational numbers
fill up the entire real line. However, the ancient Greeks discovered that this is not
true. To see how they came to this conclusion, we make a brief detour into geometry.

Recall that for each right triangle, the sum of the squares of the lengths of the two
sides that form the right angle equals the square of the length of the hypotenuse.
The next figure illustrates this result, which is called the Pythagorean Theorem.

a

b

c

The Pythagorean Theorem for right triangles: c2 = a2 + b2.

Now consider the special case where both sides that form the right angle have

The Pythagorean Theorem is
named in honor of the Greek
mathematician and philosopher
Pythagoras, who lived over 2500
years ago. The Babylonians had
discovered this result a thousand
years before Pythagoras.

length 1, as in the figure below. In this case, the Pythagorean Theorem states that
the length c of the hypotenuse satisfies the equation c2 = 2.

1

1
c

An isosceles right triangle. The Pythagorean Theorem implies that c2 = 2.

We have just seen that there is a positive real number c such that c2 = 2. This
raises the question of whether there exists a rational number c such that c2 = 2.
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We could try to find a rational number whose square equals 2 by experimentation.
One striking example is

!
99
70

"2
= 9801

4900 ;

here the numerator of the right side misses being twice the denominator by only 1.
Although

# 99
70
$2 is close to 2, it is not exactly equal to 2.

Another example is 9369319
6625109 . The square of this rational number is approximately

1.999999999999977, which is very close to 2 but again is not exactly what we seek.
Because we have found rational numbers whose squares are very close to 2, you

might suspect that with further cleverness we could find a rational number whose
square equals 2. However, the ancient Greeks proved this is impossible.

This course does not focus much on proofs. However, the Greek proof that
there is no rational number whose square equals 2 is one of the great intellectual
achievements of humanity. It should be experienced by every educated person.
Thus this proof is presented below for your enrichment.

What follows is a proof by contradiction. We will start by assuming that there is
a rational number whose square equals 2. Using that assumption, we will arrive
at a contradiction. So our assumption must have been incorrect. Thus there is no
rational number whose square equals 2.

Understanding the logical pattern
of thinking that goes into this proof
can be a valuable asset in dealing
with complex issues.

No rational number has a square equal to 2.

Proof: Suppose there exist integers m and n such that

!m
n

"2
= 2.

By canceling any common factors, we can choose m and n to have no factors in
common. In other words, m

n is reduced to lowest terms.
The equation above is equivalent to the equation

m2 = 2n2.

This implies that m2 is even; hence m is even (because the square of each odd
number is odd). Thus m = 2k for some integer k. Substituting 2k for m in the
equation above gives

4k2 = 2n2,

or equivalently
2k2 = n2.

This implies that n2 is even; hence n is even.
We have now shown that both m and n are even, contradicting our choice of

m and n as having no factors in common.
This contradiction means our original assumption that there is a rational

number whose square equals 2 must be incorrect. Thus there do not exist
integers m and n such that

#m
n
$2

= 2.

The notation
√

2 is used to denote the positive real number c such that c2 = 2.

“When you have excluded the
impossible, whatever remains,
however improbable, must be the
truth.”
—Sherlock Holmes

As we saw earlier, the Pythagorean Theorem implies that there exists a real number√
2 with the property that

(
√

2)2 = 2.

The result above implies that
√

2 is not a rational number. Thus not every real
number is a rational number. In other words, not every point on the real line
corresponds to a rational number.




